Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vict Offender ; 19(1): 119-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544914

RESUMO

Despite their rapid spread over the last 15 years, little research has explored the perceptions of Veterans Treatment Courts (VTCs) team members regarding the viability and longevity of VTCs. The present qualitative study explores the perceptions of 145 VTC team members from 20 VTCs around the United States regarding the future of their own VTC and VTCs in general. Our analysis revealed four overarching themes about team members' expectations and hopes for VTCs in the future: the need for continued funding and increased resources; desires to expand participation in VTCs; hope and uncertainty about the future of VTCs; and depending on specific people to ensure the future of VTCs. While interviewees in general felt quite hopeful and optimistic that VTCs would continue to exist and may even expand, there was unease about exactly how this would occur. These concerns included securing stable funding sources, maintaining 'buy in' from key individuals, and resource needs for expanding the participation and eligibility criteria of VTCs. Given the important role that VTCs can play in effectively supporting justice-involved veterans, and offering more benefits compared to a traditional justice-system response, it seems vital to ensure that VTCs are able to continue operating in the future.

2.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504412

RESUMO

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Assuntos
Dióxido de Carbono , Compostos Férricos , Rodopseudomonas , Oxirredução , Ácido Láctico , Compostos Ferrosos , Piruvatos , Acetatos , Glucose
3.
ACS Earth Space Chem ; 7(10): 1837-1847, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37876664

RESUMO

Heavy metal pollutants in the environment are of global concern due to their risk of contaminating drinking water and food supplies. Removal of these metals can be achieved by adsorption to mixed-valent magnetite nanoparticles (MNPs) due to their high surface area, reactivity, and ability for magnetic recovery. The adsorption capacity and overall efficiency of MNPs are influenced by redox state as well as surface charge, the latter of which is directly related to solution pH. However, the influence of microbial redox cycling of iron (Fe) in magnetite alongside the change of pH on the metal adsorption process by MNPs remains an open question. Here we investigated adsorption of Cd2+ and Cu2+ by MNPs at different pH values that were modified by microbial Fe(II) oxidation or Fe(III) reduction. We found that the maximum adsorption capacity increased with pH for Cd2+ from 256 µmol/g Fe at pH 5.0 to 478 µmol/g Fe at pH 7.3 and for Cu2+ from 229 µmol/g Fe at pH 5.0 to 274 µmol/g Fe at pH 5.5. Microbially reduced MNPs exhibited the greatest adsorption for both Cu2+ and Cd2+ (632 µmol/g Fe at pH 7.3 for Cd2+ and 530 µmol/g Fe at pH 5.5 for Cu2+). Magnetite oxidation also enhanced adsorption of Cu2+ but inhibited Cd2+. Our results show that microbial modification of MNPs has an important impact on the (im-)mobilization of aqueous contaminations like Cu2+ and Cd2+ and that a change in stoichiometry of the MNPs can have a greater influence than a change of pH.

4.
Environ Microbiol Rep ; 15(4): 324-334, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992623

RESUMO

Laboratory-based studies on microbial Fe(II) oxidation are commonly performed for 5-10 days in small volumes with high substrate concentrations, resulting in geochemical gradients and volumetric effects caused by sampling. We used a chemostat to enable uninterrupted supply of medium and investigated autotrophic nitrate-reducing Fe(II)-oxidizing culture KS for 24 days. We analysed Fe- and N-speciation, cell-mineral associations, and the identity of minerals. Results were compared to batch systems (50 and 700 mL-static/shaken). The Fe(II) oxidation rate was highest in the chemostat with 7.57 mM Fe(II) d-1 , while the extent of oxidation was similar to the other experimental setups (average oxidation of 92% of all Fe(II)). Short-range ordered Fe(III) phases, presumably ferrihydrite, precipitated and later goethite was detected in the chemostat. The 1 mM solid phase Fe(II) remained in the chemostat, up to 15 µM of reactive nitrite was measured, and 42% of visualized cells were partially or completely mineral-encrusted, likely caused by abiotic oxidation of Fe(II) by nitrite. Despite (partial) encrustation, cells were still viable. Our results show that even with similar oxidation rates as in batch cultures, cultivating Fe(II)-oxidizing microorganisms under continuous conditions reveals the importance of reactive nitrogen intermediates on Fe(II) oxidation, mineral formation and cell-mineral interactions.


Assuntos
Nitratos , Nitritos , Compostos Férricos , Compostos Ferrosos , Oxirredução , Minerais , Reatores Biológicos
5.
Environ Sci Technol ; 55(14): 9876-9884, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34247483

RESUMO

Neutrophilic microbial pyrite (FeS2) oxidation coupled to denitrification is thought to be an important natural nitrate attenuation pathway in nitrate-contaminated aquifers. However, the poor solubility of pyrite raises questions about its bioavailability and the mechanisms underlying its oxidation. Here, we investigated direct microbial pyrite oxidation by a neutrophilic chemolithoautotrophic nitrate-reducing Fe(II)-oxidizing culture enriched from a pyrite-rich aquifer. We used pyrite with natural abundance (NA) of Fe isotopes (NAFe-pyrite) and 57Fe-labeled siderite to evaluate whether the oxidation of the more soluble Fe(II)-carbonate (FeCO3) can indirectly drive abiotic pyrite oxidation. Our results showed that in setups where only pyrite was incubated with bacteria, direct microbial pyrite oxidation contributed ca. 26% to overall nitrate reduction. The rest was attributed to the oxidation of elemental sulfur (S0), present as a residue from pyrite synthesis. Pyrite oxidation was evidenced in the NAFe-pyrite/57Fe-siderite setups by maps of 56FeO and 32S obtained using a combination of SEM with nanoscale secondary ion MS (NanoSIMS), which showed the presence of 56Fe(III) (oxyhydr)oxides that could solely originate from 56FeS2. Based on the fit of a reaction model to the geochemical data and the Fe-isotope distributions from NanoSIMS, we conclude that anaerobic oxidation of pyrite by our neutrophilic enrichment culture was mainly driven by direct enzymatic activity of the cells. The contribution of abiotic pyrite oxidation by Fe3+ appeared to be negligible in our experimental setup.


Assuntos
Água Subterrânea , Nitratos , Anaerobiose , Compostos Férricos , Compostos Ferrosos , Ferro , Oxirredução , Sulfetos
6.
Environ Sci Technol ; 55(15): 10821-10831, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288663

RESUMO

Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and included-unlike water-extractable OM-compounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)-OM coprecipitates forming at anoxic-oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.


Assuntos
Compostos Férricos , Solo , Geobacter , Ferro , Minerais , Oxirredução
7.
Appl Environ Microbiol ; 87(16): e0046021, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34085863

RESUMO

Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer, and as such, there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic cosubstrates for growth, within 7 to 11 days, 0.3 to 0.5 mM nitrate was reduced and 1.3 to 2 mM iron(II) was oxidized, leading to a stoichiometric NO3-/Fe(II) ratio of 0.2, with N2 and N2O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals, but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, and microaerophilic iron(II) oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically affected aquifers. IMPORTANCE Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment, and as such, there are no model cultures available to study the rate-limiting factors of this potentially important process. Here, we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II) oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N2O and N2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Água Subterrânea/microbiologia , Nitratos/metabolismo , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Carbonato de Cálcio/análise , Carbonato de Cálcio/metabolismo , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Ferro/análise , Ferro/metabolismo , Oxirredução , Sulfetos/análise , Sulfetos/metabolismo
8.
J Hazard Mater ; 415: 125648, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088175

RESUMO

Magnetite nanoparticles are promising materials for treating toxic Cr(VI), but safe handling is challenging due to their small size. We prepared flow-through columns containing 10% or 100% (v/v) magnetite-coated sand. Cr(VI) removal efficiency was determined for different Cr(VI) concentrations (0.1 or 1.0 mM), neutral or alkaline pH, and oxic/anoxic conditions. We formulated a reactive-transport model that accurately predicted total Cr removal, accounting for reversible and irreversible (chemi)sorption reactions. Our results show that the material removes and irreversibly sequesters Cr(VI). For the concentration range used 10% and 100% (v/v) -packed columns removed > 99% and 72% of influent Cr(VI), respectively. Two distinct parameter sets were necessary to fit the identical model formulation to the 10 or 100% (v/v) columns (e.g., maximum sorption capacities (qmax) of 1.37 µmol Cr/g sand and 2.48 µmol Cr/g, respectively), which we attributed to abrasion-driven magnetite micro-particle detachment during packing yielding an increase in reactive surface area. Furthermore, experiments under oxic conditions showed that, even when handled in the presence of O2, the magnetite-coated sand maintained a high removal capacity (47%). Our coupled experimental and modelling analyses indicates that magnetite-coated sand is a promising and suitable medium for treating Cr(VI)-contaminated water in fixed-bed reactors or permeable reactive barriers.

9.
Nat Commun ; 12(1): 1349, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649339

RESUMO

The Arctic has the highest warming rates on Earth. Glaciated fjord ecosystems, which are hotspots of carbon cycling and burial, are extremely sensitive to this warming. Glaciers are important for the transport of iron from land to sea and supply this essential nutrient to phytoplankton in high-latitude marine ecosystems. However, up to 95% of the glacially-sourced iron settles to sediments close to the glacial source. Our data show that while 0.6-12% of the total glacially-sourced iron is potentially bioavailable, biogeochemical cycling in Arctic fjord sediments converts the glacially-derived iron into more labile phases, generating up to a 9-fold increase in the amount of potentially bioavailable iron. Arctic fjord sediments are thus an important source of potentially bioavailable iron. However, our data suggests that as glaciers retreat onto land the flux of iron to the sediment-water interface may be reduced. Glacial retreat therefore likely impacts iron cycling in coastal marine ecosystems.

10.
Environ Sci Technol ; 55(5): 3399-3407, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33554594

RESUMO

Mercury (Hg) is a toxic trace element of global environmental concern which has been increasingly dispersed into the environment since the industrial revolution. In aquatic and terrestrial systems, Hg can be reduced to elemental Hg (Hg0) and escape to the atmosphere or converted to methylmercury (MeHg), a potent neurotoxin that accumulates in food webs. FeII-bearing minerals such as magnetite, green rusts, siderite, and mackinawite are recognized HgII reducers. Another potentially Hg-reducing mineral, which commonly occurs in Fe- and organic/P-rich sediments and soils, is the ferrous iron phosphate mineral vivianite (FeII3(PO4)2·8H2O), but its reaction with HgII has not been studied to date. Here, nanoparticulate vivianite (particle size ∼ 50 nm; FeII content > 98%) was chemically synthesized and characterized by a combination of chemical, spectroscopic, and microscopic analyses. Its ability to reduce HgII was investigated at circumneutral pH under anoxic conditions over a range of FeII/HgII ratios (0.1-1000). For FeII/HgII ratios ≥1, which are representative of natural environments, HgII was very quickly and efficiently reduced to Hg0. The ability of vivianite to reduce HgII was found to be similar to those of carbonate green rust and siderite, two of the most effective Hg-reducing minerals. Our results suggest that vivianite may be involved in abiotic HgII reduction in Fe and organic/P-rich soils and sediments, potentially contributing to Hg evasion while also limiting MeHg formation in these ecosystems.


Assuntos
Mercúrio , Ecossistema , Compostos Ferrosos , Oxirredução , Fosfatos
11.
Nat Rev Microbiol ; 19(6): 360-374, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33526911

RESUMO

Biogeochemical cycling of iron is crucial to many environmental processes, such as ocean productivity, carbon storage, greenhouse gas emissions and the fate of nutrients, toxic metals and metalloids. Knowledge of the underlying processes involved in iron cycling has accelerated in recent years along with appreciation of the complex network of biotic and abiotic reactions dictating the speciation, mobility and reactivity of iron in the environment. Recent studies have provided insights into novel processes in the biogeochemical iron cycle such as microbial ammonium oxidation and methane oxidation coupled to Fe(III) reduction. They have also revealed that processes in the biogeochemical iron cycle spatially overlap and may compete with each other, and that oxidation and reduction of iron occur cyclically or simultaneously in many environments. This Review discusses these advances with particular focus on their environmental consequences, including the formation of greenhouse gases and the fate of nutrients and contaminants.


Assuntos
Bactérias/metabolismo , Ferro/química , Ferro/metabolismo , Ciclo do Carbono , Ecossistema , Ciclo do Nitrogênio , Oxirredução
12.
Beilstein J Nanotechnol ; 12: 1-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489663

RESUMO

Scanning helium-ion microscopy (HIM) is an imaging technique with sub-nanometre resolution and is a powerful tool to resolve some of the tiniest structures in biology. In many aspects, the HIM resembles a field-emission scanning electron microscope (FE-SEM), but the use of helium ions rather than electrons provides several advantages, including higher surface sensitivity, larger depth of field, and a straightforward charge-compensating electron flood gun, which enables imaging of non-conductive samples, rendering HIM a promising high-resolution imaging technique for biological samples. Starting with studies focused on medical research, the last decade has seen some particularly spectacular high-resolution images in studies focused on plants, microbiology, virology, and geomicrobiology. However, HIM is not just an imaging technique. The ability to use the instrument for milling biological objects as small as viruses offers unique opportunities which are not possible with more conventional focused ion beams, such as gallium. Several pioneering technical developments, such as methods to couple secondary ion mass spectrometry (SIMS) or ionoluminescence with the HIM, also offer the possibility for new and exciting research on biological materials. In this review, we present a comprehensive overview of almost all currently published literature which has demonstrated the application of HIM for imaging of biological specimens. We also discuss some technical features of this unique type of instrument and highlight some of the new advances which will likely become more widely used in the years to come.

13.
Nat Commun ; 11(1): 6329, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303752

RESUMO

It has been shown that reactive soil minerals, specifically iron(III) (oxyhydr)oxides, can trap organic carbon in soils overlying intact permafrost, and may limit carbon mobilization and degradation as it is observed in other environments. However, the use of iron(III)-bearing minerals as terminal electron acceptors in permafrost environments, and thus their stability and capacity to prevent carbon mobilization during permafrost thaw, is poorly understood. We have followed the dynamic interactions between iron and carbon using a space-for-time approach across a thaw gradient in Abisko (Sweden), where wetlands are expanding rapidly due to permafrost thaw. We show through bulk (selective extractions, EXAFS) and nanoscale analysis (correlative SEM and nanoSIMS) that organic carbon is bound to reactive Fe primarily in the transition between organic and mineral horizons in palsa underlain by intact permafrost (41.8 ± 10.8 mg carbon per g soil, 9.9 to 14.8% of total soil organic carbon). During permafrost thaw, water-logging and O2 limitation lead to reducing conditions and an increase in abundance of Fe(III)-reducing bacteria which favor mineral dissolution and drive mobilization of both iron and carbon along the thaw gradient. By providing a terminal electron acceptor, this rusty carbon sink is effectively destroyed along the thaw gradient and cannot prevent carbon release with thaw.

14.
Sci Rep ; 10(1): 19007, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149170

RESUMO

Biochar (BC) and magnetite (Fe3O4) nanoparticles (MNP) have both received considerable recent attention in part due to their potential use in water treatment. While both are effective independently in the removal of a range of anionic metals from aqueous solution, the efficacy of these materials is reduced considerably at neutral pH due to decreased metal adsorption and MNP aggregation. In addition to synthetic metal oxide-biochar composites for use in treatment and remediation technologies, aggregates may also occur in nature when pyrolytic carbon is deposited in soils. In this study, we tested whether magnetite synthesized in the presence of biochar leads to increased removal efficiency of hexavalent chromium, Cr(VI), at the mildly acidic to neutral pH values characteristic of most natural and contaminated aqueous environments. To do so, magnetite nanoparticles and biochar produced from ground willow were synthesized to form composites (MNP-BC). Batch studies showed that MNP-BC markedly enhanced both adsorption and reduction of Cr(VI) from aqueous solution at acidic to neutral pH as compared to MNP and BC separately, suggesting a strong synergetic effect of hybridizing Fe3O4 with BC. Mechanistically, the Cr(VI) removal processes occurred through both adsorption and intraparticle diffusion followed by reduction to Cr(III). Synchrotron-based X-ray absorption spectroscopy analyses confirmed that Cr(VI) was reduced at the surface of MNP-BC, with electrons derived directly from both biochar and magnetite at low pH, while at near-neutral pH, biochar increased Cr(VI) reduction by inhibiting MNP aggregation. Extended X-ray absorption fine structure fitting results confirmed that the Cr(III) precipitates consist of Cr(OH)3 and chromite (Cr2FeO4) nanoparticles. Our results demonstrate that MNP-BC composites have great potential as a material for the treatment of chromate-containing aqueous solutions across a wide range of pH values, and provide information valuable broadly relevant to soils and sediments that contain biochar.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33106262

RESUMO

The U.S. Food and Drug Administration (FDA) hosted a public workshop entitled "Advancing Animal Models for Antibacterial Drug Development" on 5 March 2020. The workshop mainly focused on models of pneumonia caused by Pseudomonas aeruginosa and Acinetobacter baumannii The program included discussions from academic investigators, industry, and U.S. government scientists. The potential use of mouse, rabbit, and pig models for antibacterial drug development was presented and discussed.


Assuntos
Acinetobacter baumannii , Antibacterianos , Animais , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos , Camundongos , Modelos Animais , Coelhos , Suínos , Estados Unidos , United States Food and Drug Administration
16.
Environ Sci Technol ; 54(15): 9445-9453, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633952

RESUMO

Natural organic matter (NOM) is known to affect the microbial reduction and transformation of ferrihydrite, but its implication toward cadmium (Cd) associated with ferrihydrite is not well-known. Here, we investigated how Cd is redistributed when ferrihydrite undergoes microbial reduction in the presence of NOM. Incubation with Geobacter sulfurreducens showed that both the rate and the extent of reduction of Cd-loaded ferrihydrite were enhanced by increasing concentrations of NOM (i.e., C/Fe ratio). Without NOM, only 3-4% of Fe(III) was reduced, but around 61% of preadsorbed Cd was released into solution due to ferrihydrite transformation to lepidocrocite. At high C/Fe ratio (1.6), more than 35% of Fe(III) was reduced, as NOM can facilitate bioreduction by working as an electron shuttle and decreased aggregate size, but only a negligible amount of Cd was released into solution, thus decreasing Cd toxicity and prolonging microbial Fe(III) reduction. No ferrihydrite transformation was observed at high C/Fe ratios using Mössbauer spectroscopy and X-ray diffraction, and X-ray absorption spectroscopy indicated the proportion of Cd-OM bond increased after microbial reduction. This study shows that the presence of NOM leads to less mobilization of Cd under reducing condition possibly by inhibiting ferrihydrite transformation and recapturing Cd through Cd-OM bond.


Assuntos
Cádmio , Compostos Férricos , Geobacter , Ferro , Minerais , Oxirredução
17.
J Hazard Mater ; 400: 123139, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32563903

RESUMO

Magnetite nanoparticles are often promoted as remediation agents for heavy metals such as chromium due to their reactivity and high surface area. However, their small size also makes them highly mobile increasing the risk that reacted pollutants will be transported to different locations rather than being safely controlled. Released to aquatic environments, aggregation leads to a loss of their nano-specific properties and contaminant-removal capacity. We immobilized magnetite onto sand to overcome these issues whilst maintaining reactivity. We compare biogenic magnetite and abiogenic magnetite coated sand against magnetite nanoparticles. Magnetite coatings mostly exhibited a Fe(II)/Fe(III) ratio close to stoichiometry (0.5). We tested the efficacy of the magnetite-coated sand to adsorb chromium, with respect to biogenic/abiogenic nanoparticles. Langmuir-type sorption of Cr(VI) onto magnetite (4.32 mM total Fe) was observed over the tested concentration range (10-1000 µM). Biogenic nanoparticles showed the highest potential for Cr(VI) removal with maximum adsorption capacity (Qmax) of 1250 µmol Cr/g Fe followed by abiogenic nanoparticles with 693 µmol Cr/g Fe. All magnetite coated sands exhibited similar sorption behavior with average Qmax ranging between 257-471 µmol Cr/g Fe. These results indicate coating magnetite onto sand may be more suitable than free nanoparticles for treating environmental pollutants such as chromium.

18.
Environ Sci Process Impacts ; 22(6): 1355-1367, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32374339

RESUMO

In submerged soils and sediments, clay minerals are often exposed to anoxic waters containing ferrous iron (Fe2+). Here, we investigated the sorption of Fe2+ onto a synthetic montmorillonite (Syn-1) low in structural Fe (<0.05 mmol Fe per kg) under anoxic conditions and the effects of subsequent oxidation. Samples were prepared at two Fe-loadings (0.05 and 0.5 mol Fe added per kg clay) and equilibrated for 1 and 30 days under anoxic conditions (O2 < 0.1 ppm), followed by exposure to ambient air. Iron solid-phase speciation and mineral identity was analysed by 57Fe Mössbauer spectroscopy and synchrotron X-ray absorption spectroscopy (XAS). Mössbauer analyses showed that Fe(ii) was partially oxidized (14-100% of total added Fe2+) upon sorption to Syn-1 under anoxic conditions. XAS results revealed that the added Fe2+ mainly formed precipitates (layered Fe minerals, Fe(iii)-bearing clay minerals, ferrihydrite, and lepidocrocite) in different quantities depending on the Fe-loading. Exposing the suspensions to ambient air resulted in rapid and complete oxidation of sorbed Fe(ii) and the formation of Fe(iii)-phases (Fe(iii)-bearing clay minerals, ferrihydrite, and lepidocrocite), demonstrating that the clay minerals were unable to protect ferrous Fe from oxidation, even when equilibrated 30 days under anoxic conditions prior to oxidation. Our findings clarify the role of clay minerals in the formation and stability of Fe-bearing solid phases during redox cycles in periodically anoxic environments.


Assuntos
Compostos Férricos , Ferro , Argila , Compostos Ferrosos , Minerais , Oxirredução
19.
Environ Sci Technol ; 54(8): 4840-4846, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32167294

RESUMO

Uranium (U) in situ bioremediation has been investigated as a cost-effective strategy to tackle U contamination in the subsurface. While uraninite was believed to be the only product of bioreduction, numerous studies have revealed that noncrystalline U(IV) species (NCU(IV)) are dominant. This finding brings into question the effectiveness of bioremediation because NCU(IV) species are expected to be labile and susceptible to oxidation. Thus, understanding the stability of NCU(IV) in the environment is of crucial importance. Fe(II) minerals (such as FeS) are often associated with U(IV) in bioremediated or naturally reduced sediments. Their impact on the stability of NCU(IV) is not well understood. Here, we show that, at high dissolved oxygen concentrations, FeS accelerates NCU(IV) reoxidation. We hypothesize that either highly reactive ferric minerals or radical S species produced by the oxidation of FeS drive this rapid reoxidation of NCU(IV). Furthermore, we found evidence for the contribution of reactive oxygen species to NCU(IV) reoxidation. This work refines our understanding of the role of iron sulfide minerals in the stability of tetravalent uranium in the presence of oxygen in a field setting such as contaminated sites or uranium-bearing naturally reduced zones.


Assuntos
Compostos de Urânio , Urânio , Biodegradação Ambiental , Compostos Ferrosos , Sedimentos Geológicos , Oxirredução , Espectroscopia por Absorção de Raios X
20.
Environ Sci Technol ; 54(7): 4121-4130, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129607

RESUMO

Magnetite (Fe3O4) is an environmentally ubiquitous mixed-valent iron (Fe) mineral, which can form via biotic or abiotic transformation of Fe(III) (oxyhydr)oxides such as ferrihydrite (Fh). It is currently unclear whether environmentally relevant biogenic Fh from Fe(II)-oxidizing bacteria, containing cell-derived organic matter, can transform to magnetite. We compared abiotic and biotic transformation: (1) abiogenic Fh (aFh); (2) abiogenic Fh coprecipitated with humic acids (aFh-HA); (3) biogenic Fh produced by phototrophic Fe(II)-oxidizer Rhodobacter ferrooxidans SW2 (bFh); and (4) biogenic Fh treated with bleach to remove biogenic organic matter (bFh-bleach). Abiotic or biotic transformation of Fh was promoted by Feaq2+ or Fe(III)-reducing bacteria. Feaq2+-catalyzed abiotic reaction with aFh and bFh-bleach led to complete transformation to magnetite. In contrast, aFh-HA only partially (68%) transformed to magnetite, and bFh (17%) transformed to goethite. We hypothesize that microbial biomass stabilized bFh against reaction with Feaq2+. All four Fh substrates were transformed into magnetite during biotic reduction, suggesting that Fh remains bioavailable even when associated with microbial biomass. Additionally, there were poorly ordered magnetic components detected in the biogenic end products for aFh and aFh-HA. Nevertheless, abiotic transformation was much faster than biotic transformation, implying that initial Feaq2+ concentration, passivation of Fh, and/or sequestration of Fe(II) by bacterial cells and associated biomass play major roles in the rate of magnetite formation from Fh. These results improve our understanding of factors influencing secondary mineralization of Fh in the environment.


Assuntos
Compostos Férricos , Substâncias Húmicas , Biomassa , Óxido Ferroso-Férrico , Minerais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...